non-abelian, soluble, monomial
Aliases: C32⋊SD32, C4.2S3≀C2, (C3×C6).2D8, (C3×C12).6D4, C32⋊2D8.C2, C2.4(C32⋊D8), C32⋊2C16⋊2C2, C32⋊2Q16⋊1C2, C32⋊4C8.2C22, SmallGroup(288,383)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C32⋊4C8 — C32⋊SD32 |
C1 — C32 — C3×C6 — C3×C12 — C32⋊4C8 — C32⋊2D8 — C32⋊SD32 |
C32 — C3×C6 — C3×C12 — C32⋊4C8 — C32⋊SD32 |
Generators and relations for C32⋊SD32
G = < a,b,c,d | a3=b3=c16=d2=1, ab=ba, cac-1=b-1, dad=a-1, cbc-1=a, bd=db, dcd=c7 >
Character table of C32⋊SD32
class | 1 | 2A | 2B | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A | 8B | 12A | 12B | 12C | 12D | 16A | 16B | 16C | 16D | |
size | 1 | 1 | 24 | 4 | 4 | 2 | 24 | 4 | 4 | 24 | 24 | 18 | 18 | 8 | 8 | 24 | 24 | 18 | 18 | 18 | 18 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 0 | 2 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -√2 | √2 | -√2 | √2 | orthogonal lifted from D8 |
ρ7 | 2 | 2 | 0 | 2 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | √2 | -√2 | √2 | -√2 | orthogonal lifted from D8 |
ρ8 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | complex lifted from SD32 |
ρ9 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | ζ165+ζ163 | complex lifted from SD32 |
ρ10 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | √2 | -√2 | 0 | 0 | 0 | 0 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ167+ζ16 | complex lifted from SD32 |
ρ11 | 2 | -2 | 0 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -√2 | √2 | 0 | 0 | 0 | 0 | ζ167+ζ16 | ζ165+ζ163 | ζ1615+ζ169 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ12 | 4 | 4 | -2 | -2 | 1 | 4 | 0 | -2 | 1 | 1 | 1 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ13 | 4 | 4 | 0 | 1 | -2 | 4 | 2 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | -2 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ14 | 4 | 4 | 2 | -2 | 1 | 4 | 0 | -2 | 1 | -1 | -1 | 0 | 0 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ15 | 4 | 4 | 0 | 1 | -2 | 4 | -2 | 1 | -2 | 0 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 0 | 1 | -2 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | √-3 | -√-3 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ17 | 4 | 4 | 0 | 1 | -2 | -4 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -√-3 | √-3 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ18 | 4 | 4 | 0 | -2 | 1 | -4 | 0 | -2 | 1 | -√-3 | √-3 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ19 | 4 | 4 | 0 | -2 | 1 | -4 | 0 | -2 | 1 | √-3 | -√-3 | 0 | 0 | 2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C32⋊D8 |
ρ20 | 8 | -8 | 0 | -4 | 2 | 0 | 0 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful, Schur index 2 |
ρ21 | 8 | -8 | 0 | 2 | -4 | 0 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 39 32)(3 18 41)(5 43 20)(7 22 45)(9 47 24)(11 26 33)(13 35 28)(15 30 37)
(2 40 17)(4 19 42)(6 44 21)(8 23 46)(10 48 25)(12 27 34)(14 36 29)(16 31 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(2 8)(3 15)(4 6)(5 13)(7 11)(10 16)(12 14)(17 46)(18 37)(19 44)(20 35)(21 42)(22 33)(23 40)(24 47)(25 38)(26 45)(27 36)(28 43)(29 34)(30 41)(31 48)(32 39)
G:=sub<Sym(48)| (1,39,32)(3,18,41)(5,43,20)(7,22,45)(9,47,24)(11,26,33)(13,35,28)(15,30,37), (2,40,17)(4,19,42)(6,44,21)(8,23,46)(10,48,25)(12,27,34)(14,36,29)(16,31,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,46)(18,37)(19,44)(20,35)(21,42)(22,33)(23,40)(24,47)(25,38)(26,45)(27,36)(28,43)(29,34)(30,41)(31,48)(32,39)>;
G:=Group( (1,39,32)(3,18,41)(5,43,20)(7,22,45)(9,47,24)(11,26,33)(13,35,28)(15,30,37), (2,40,17)(4,19,42)(6,44,21)(8,23,46)(10,48,25)(12,27,34)(14,36,29)(16,31,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (2,8)(3,15)(4,6)(5,13)(7,11)(10,16)(12,14)(17,46)(18,37)(19,44)(20,35)(21,42)(22,33)(23,40)(24,47)(25,38)(26,45)(27,36)(28,43)(29,34)(30,41)(31,48)(32,39) );
G=PermutationGroup([[(1,39,32),(3,18,41),(5,43,20),(7,22,45),(9,47,24),(11,26,33),(13,35,28),(15,30,37)], [(2,40,17),(4,19,42),(6,44,21),(8,23,46),(10,48,25),(12,27,34),(14,36,29),(16,31,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(2,8),(3,15),(4,6),(5,13),(7,11),(10,16),(12,14),(17,46),(18,37),(19,44),(20,35),(21,42),(22,33),(23,40),(24,47),(25,38),(26,45),(27,36),(28,43),(29,34),(30,41),(31,48),(32,39)]])
Matrix representation of C32⋊SD32 ►in GL6(𝔽97)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 96 | 1 | 0 | 0 |
0 | 0 | 96 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 96 | 1 |
0 | 0 | 0 | 0 | 96 | 0 |
34 | 77 | 0 | 0 | 0 | 0 |
10 | 54 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 41 | 15 | 0 | 0 |
0 | 0 | 82 | 56 | 0 | 0 |
96 | 95 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 41 | 15 |
0 | 0 | 0 | 0 | 82 | 56 |
G:=sub<GL(6,GF(97))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,96,96,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,96,96,0,0,0,0,1,0],[34,10,0,0,0,0,77,54,0,0,0,0,0,0,0,0,41,82,0,0,0,0,15,56,0,0,0,1,0,0,0,0,1,0,0,0],[96,0,0,0,0,0,95,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,41,82,0,0,0,0,15,56] >;
C32⋊SD32 in GAP, Magma, Sage, TeX
C_3^2\rtimes {\rm SD}_{32}
% in TeX
G:=Group("C3^2:SD32");
// GroupNames label
G:=SmallGroup(288,383);
// by ID
G=gap.SmallGroup(288,383);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,85,120,254,135,142,675,346,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^16=d^2=1,a*b=b*a,c*a*c^-1=b^-1,d*a*d=a^-1,c*b*c^-1=a,b*d=d*b,d*c*d=c^7>;
// generators/relations
Export
Subgroup lattice of C32⋊SD32 in TeX
Character table of C32⋊SD32 in TeX